A NEW METRIC FOR ASSESSING PLANETARY SURFACE HABITABILITY

Life and Planet (10th July 2024) Hannah L. Woodward (<u>hannah.woodward@bbk.ac.uk</u>), Andrew J. Rushby, Nathan J. Mayne.

BACKGROUND

- or technosignatures.
- surface temperature ranges, ice-free fraction, aridity:
 - How do patterns of habitability compare?
 - How do metrics compare to how we see life spatially distributed on Earth?
 - Can we improve on these metrics?
 - well as 'microbial' life

Considering habitable area of planetary surface is important for potential emergence and evolution of life, with implications for generation and subsequent detection of biosignatures and/

Variety of climate-based metrics defined so far, based upon various variables including 'habitable'

• Can we extend out of a 'binary' habitability? e.g. consider conditions optimal for 'complex' as

EARTH 'OBSERVED' HABITABILITY

- Satellite-derived data: MODIS NDVI (terrestrial) + OC-CCI Chlorophyll-a concentration (marine) across 2003–2018
- Discretise into habitability categories:

 $H^{obs} = \begin{cases} \text{complex} & \text{if } NDVI_{mean} > 0.3 | Chl-a_{min} > 0.15 \text{ mg m}^{-3}, \\ \text{microbial} & \text{if } NDVI_{mean} > 0.15 | Chl-a_{mean} > 0.15 \text{ mg m}^{-3}, \\ \text{limited} & \text{otherwise} \end{cases}$

- NDVI thresholds based on annual mean biomes:
 - Complex: annual mean value across vegetated biomes
 - Microbial: maximum value of bare ground, soil, sand, rock
- Chla-a thresholds based on annual mean and minimum due to short phytoplankton turnover time (~2-6 days) & value corresponds to a shift from abundance in picoplankton to nano- and microplankton as well as from phytoplankton to mesozooplankton.
 - Complex: annual minimum applies ability to continually support higher trophic states
 - Microbial: annual mean recognises seasonal abundance of phytoplankton

INITIAL METRIC COMPARISON

- Data source: ERA5 reanalysis across 2003–2018
- Unless otherwise specified, 'microbial' is default habitak category for where metric criteria is satisfied
- Validation:
 - Accuracy: the weighted fraction of grid cells correctly assigned
 - Heidke Skill Score (HSS): accuracy to predictive skil random chance
 - Chi-squared (χ^2): statistical significance of relations with observed
 - Fractional habitability (f_H): proportion of the plane that satisfies the habitability criteria as defined by me

Эle	Metric	Domain	Definition	Valid fc	
	HSO8	Global	$O \leq T_s \leq 100^{\circ}C$	Microbi	
	⊣S16	Global	$O \leq T_s \leq 50^{\circ}C$	Comple	
У	⊣S19	Global	$5 < T_{ m bio} < 30^{\circ}{ m C}$	Comple	
VS	┝┥IF	Marine	<i>SIC</i> < 0.15	Microbi	
nip	HDG19NA	Terrestrial	<i>AI</i> ≥ 0.17	Microbi	
	HDG19H	Terrestrial	<i>AI</i> > 0.39	Microbi	
t	► Biote	emperature	 Surface air tempe 	erature T_s	
etric	$T_{\rm bio} = \left\{ \right.$	$\begin{array}{ccc} \hline 30 & \text{if} & T_s \geq 30^{\circ} \mathbb{C} \\ 0 & \text{if} & T_s \leq 0^{\circ} \mathbb{C} \end{array}$	 Sea ice concentra 	ation <i>SIC</i>	
		$T_{\rm s}$ otherwise	Aridity index AI -	P	

P + PET

INITIAL METRIC COMPARISON

- Metrics able to partially capture patterns of habitability, with T_s -based metrics showing different patterns to AI-based metrics
 - New metric definition should incorporate
 both temperature and 'water availability'
- AI definition uses PET, which makes it only applicable to land, as well as including transpiration which may introduce bias wrt exoplanet habitability.
 - Can similar habitability patterns be captured using variables that can be applied globally?

NEW METRIC DEFINITION

Combining the complex life habitability metric with the observed temperature limits of microbial life, we define $H_T = H_T(T_s)$ describing the thermal habitability:

$$H_T(T_s) = \left\{ egin{array}{ll} ext{complex} & ext{if} & 0 \leq T_s \leq 50\ ^\circ \mathbb{C}, \ & ext{microbial} & ext{if} & -20 \leq T_s \leq 122\ ^\circ \mathbb{C}, \ & ext{limited} & ext{otherwise} \end{array}
ight.$$

for surface air temperature $T_s = T_s(\phi, \lambda)$, latitude ϕ , and longitude λ . The climatological surface habitability water fluxes to represent 'water availability':

$$H(T_s, P, E) = \begin{cases} H_T & \text{if} \\ \text{limited oth} \end{cases}$$

for precipitation $P = P(\phi, \lambda)$ and evaporation $E = E(\phi, \lambda)$.

 $H = H(T_s, P, E)$ is then defined as the category as described by H_T with an additional condition which uses surface

$P - E \ge 0 \& P \ge 250 \text{ mm year}_{\oplus}^{-1}$,

nerwise

METRIC COMPARISON & VALIDATION

- Qualitative improvement: captures high latitude shift to microbial habitability as well as lower latitude regions of limited habitability
- Surface habitability constraints:
 - High latitude + altitudes: mixture of temperature and water limitation
 - Low latitude: water limitation

METRIC COMPARISON & VALIDATION

- Quantitative improvement across all domains. Higher HSS indicates of increase in predictive skill:
 - Particularly for 'complex' habitability + in the marine domain
 - Marine: greatest improvement relative to other metrics
 - **Terrestrial**: metric performs best
 - ► f_H: H^{W24} closer to observed for all metrics except for H^{SO8} in microbial terrestrial, but H^{W24} has higher accuracy + HSS

MICROBIAL

Domain & Metri
Global
HW24
Hso8
Marine
HW24
H ^{SO8}
HIF
Terrestrial
HW24
HS08
HDG19NA
HDG19H

COMPLEX

С	Acc	HSS	X ²	fн		Domain & Metric	Acc
				0.59		Global	
	67%	034			HW24	70%	
	0770	0.04	4700	0.33	H ^{S16}	46%	
	59%	0.05	135	0.85		H ^{S19}	47%
				O.55	·	Marine	
	64%	0.28	2550	0.49		HW24	66%
	52%	-0.03	83	0.89		HS16	38%
	53%	-0.02	31	0.90		H ^{S19}	37%
				0.71		Terrestrial	
	77%	0.48	2881	0.62		HW24	80%
	75%	0.36	1566	0.75		HS16	68%
	70%	0.15	326	0.60		HS19	71%
	52%	-0.04	22	0.60			

 χ^2

5455

1333

990

1898

671

31

4287

2523

HSS

0.36

0.10

0.10

O.25

0.06

0.02

0.60

0.33

0.40

CONCLUSIONS + FUTURE WORK

- Presented a new metric of surface habitability based on surface air temperature, precipitation, and evaporation, which:
 - Indicates water limitation at low latitudes and a mixture of temperature & water limitation at high latitudes & elevations on Earth.
 - Qualitatively captures patterns of observed habitability (e.g. 'limited' habitability ice sheets, deserts, mountains, sub-tropical ocean gyres; 'complex' equator & midlatitudes; 'microbial' high-latitudes).
 - Is validated against satellite-derived data of photosynthetic life with a statistically significant relationship across marine and terrestrial domains that can be attributed to predictive skill vs random chance.

- Performed best in comparison against other popular metrics: overall accuracy of 67% (microbial) & 70% (complex) with best performance seen on land -77%(microbial) & 80% (complex)
- Future work:
 - Apply metric to other worlds tidally-locked exoplanets, but also past Mars or Earth?
 - Investigate incorporation of other sources of water, e.g. surface runoff, glacial melt, rivers, groundwater
 - Repeat validation using other datasets representative of Earth-based life, e.g. biodiversity or species richness

